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LIGHT SCATTERING FROM ROUGH SURFACES

FINAL REPORT

EXECUTIVE SUMMARY

The particular aspect of light scattering investigated in this project was the angular correlation
of speckle patterns produced by scattering from rough surfaces. The Report consists primarily
of a draft copy of the Thesis of R J Syratt, the student employed on the Contract.

A randomly rough surface illuminated by a parallel laser beam at some angle 0 produces a
speckle pattern in space. If the angle of illumination is changed to 0 + 80 then the speckle

pattern changes in two ways: (i) it translates in angle and (ii) it changes its x m in a manner

that depends on the detailed surface characteristics and the angles involved. We have made
experimental measurements of the angular correlation of speckle for two-dimensional Gaussian
surfaces of low and high root-mean-square slope. In comparing with theory we have
distinguished between surfaces for which single scattering is valid (very low slope) and those

for which Kirchhoff theory is valid (larger rms slopes). A numerical ray-tracing approach has

been implemented for two-dimensional surfaces that includes shadowing and polarisation in a
limited way. A conceptual, heuristic model is developed that explains the essential physical

features.

In addition to the main subject of this study, we also investigated a number of subsidiary topics

as detailed in the attached publications.
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Mutil Ocatterang, from--rough dldectric-and metal
auraces using the Kirchhoff, approximation

N., C. BRUCE and 1. C. DAINTY
The BlackettI.aboratory, Imperial College,
London SW7 28Z, England

(Received 11 Jwmxjry 1991)

Amusract. The Kirchhoff doubleý-scatter mncthad for c~1culating the intensity
diatribtition scattered from-a rough kitrface is exended to dielectric and metal
surfice materials. The material properli'sm are contained in the Fresnel reflection
coeflicieats only- It is shown that the resultseagree well with calculation~s using the

J ~exact method for a urfacte of Gaussianistatistics with standard deviation of height
a = 193A and lie correlation length = 5-02A.

1, Introduction
In a previous paper [1] it witb shown that usiwg the Kirchhuff approximation

(KA) and including shadowing, it was possible to derive equations for the single- and
double-scatter contri,uon ~oteitnsity. distribution scattered from a randomly
rough surface. In [1]. the simplest situation was considered-that of a perfectly
conducting surface. As expectea, the double-scatter term showed the enhanced
backscatter effeet jl-4], with a peak approrntimatel equal to twice the background in
the backscatte direction. Thais agees with the simple ray picture of the scattering

3process for which rays and, their time-reversed partners add coherently in the
bacltscatter direction and incoherently in other directions.

A comparison -of the perfect conductor calculations with experimental distri-
butions of the scattered light from a go'd-coated surface with Gaussian statistics
showed good agreementat low anglesof incidence (up to about 200 from normal) but
poor agreement-at hignmer angles [11J. the -same trend is seen int comparisons of exact
calculations using the extinction theorem with experimental values [4], although for
perfecty conducting surfaices the calculated intensities for the extinction and
Kirchhoff diouble-scatter methods agree very well [5]. This suggests that the
Kiichhoff method has included the main physical processes that produce enhanced
backscattiýr

In this paper the results of the method for the more general cases of scattering
1' from adielectric and a general conductor (metal) are reported. In section 2 the theory

is briefly outlined and in section 3 the results are shown and compared with exact
calculations and experimental results.

2. T'heory
~ 41 The starting point is the two-dimensional Helmholtz integral equation for a

F scattered field (the surface profile is constant along the y-direction):

0930-340191 S3300 0 1991 Taylor & Francis Ltd.
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where E,(x', z') is the total field at the point (x', H'), rI= [x-x')2 + (k -i)2] 12, .jal )(r)

surface.
hIMpproxintestthetotafidd on the surface *a the tur of the incident field

"plus the reflectadfield at that point: -

Et(x- z)= (1 + R)Ei(x,z), (2)

aIO X,) i(1-R)kiaEx,,x), (3)

where R is the planar reflection coefficient at that point, depending on the local
"incidence angle; ER(x, z) is the field incident at that point;, ki is the incident wave-
vector, and a is the outward normal to the surface at the point (x, 4), Since R is thc
planar reflection coefficient, we immediately have a condition for the validity of the
apprcximatio-athe surface must be locally flat or, as is usually written, the radius of
curvature of the surface must be large compared with the wavelength.

Substituting (2) and (3) into (1) and performing a small amount of mathematics,
following Beckmann and Spizzichino [6], the standard single-scatter solution is
obtained:S(f 2 ý'12expi-p 1+co (0+o,)f

"E,(O) 2 coiO'cosO, r R(x', z') exp i(k 1-k) R dx', (4)

-where the reflectivity is a functior of x, since the local angle of incidence varies along
the surface, In equation (4), 01 :s the incidence angle, 0 is the angle of scatter
(inetsueied poiitive in the oppoaitt direction to the incident angle) and q is a phase
factor depending onlyon (x, 4) and not on (x', '). To obtain this expression we have
askuined '-iViicident plane wave of unit amplitude. Shadowing effects must
"somehow be included in-this method 'o have a physically realistic result. This is done
by multiplying the integrind in (4) by incidence and scatter shadow functions

I i -(x,*)is illuminated,
0 V~x, a') is not illuminated,

1•-1 (x,% ) is visible,
0 if (xl', Y') is not visible.

These represent geometrical or -straight line shadow functions and so are an
approxination to the tue effect of shadowing. -

Thezderivationofthedouble-scattertontribution involves two terms. The first is
"the field scattered from one point on the surface to another point, also on the surface,

AI. I ~ c-xi) k(za-2 - 1 )\
E.(t 2, Z2 ) I +R12 1/V~k

S-~~~- (1- R•)ik~mlsin 0,+ cos 0•)HUI(krl z) Ej(xj, zl), (5)

where subscript I represents the first point and subscript 2 the second. The normal
derivative of the Hankel fundtion is given by

O~kri 2 L~k(x2z-xi)+azz 1M )l.()-i •.1

+&L -, -U'kl) (6)4

S I
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MsdtiPle watteriq and the Kirchhoff approximation 1473

The second term is the field scattered into the space above the surface from every
'-'.)combination of first and second points:

/2 exp 2

E0 sin 0- cos .)E_(x 2, z2)

-where we have included another shadowing function todescribe shadowing between
points on the surface:

s 1 if (X2,Z2) is visible from (xl,z1 ),
S12ý 0 if (x2 , 2 ) is not visible from (x,,z,),

coand substituted

S12=S(x11 z 1 )S12 S'(x7, Z2).
S~In equation (7) we have used equation (2) a second time to write that the total field at

the second point is the field from the first point plus its reflection (R2). This can be
seen to be reasonable if it is noted that the condition on the radius of curvature
depends only on the surface profile and so will be true for all subsequent interactions
if it is true for the first. The validity of the parameters used here was discussed in the
previous paper. This method is the same as the iterative Kirchhoff solution [7,8] but
with the inclusion of the shadow functions giving the effect of shadowing explicitly
rather than implicitly as in the iterative method [8).

Equations (5) and (7) together form the double-scatter contribution. The
simplest case to consider is when the material is perfectly conducting. Then the
reflection coefficients R are either 1 or -- 1 for p (TM) and s (TE) polarizations,
respectively, and we are left with only one term as already discussed. For the more
general case we end up with the sum of four terms. In all the cases considered, the
normal derivative MEs(x 2 , z2)/On 2 is rpproximated in the following way:.

OE,(X2, *2) If / (2X)k-2-Z H'(r2
4i~ 1 \+j 1 2 1 an2

-(l--R)ih(m, sinO,+cosO,) EHj(kr1 2 ) )E,(x 1, z1 ). (8)

In (8) we need to use

&i2 ~ x -f12 r12-zj 2
The material dependence of these equations is contained solely in the Fresnel
reflection coefficients RI For scattering from a dielectric surface of refractive index n
in air (n= 1), the reflection coefficients for p and a polarizations are (9]

(i Ii .1Sncos]

£ ____!!!12__81

n~ 2j :



" 1474 N. C. Brce a•d J. C. Dainty

coO1 n i 2 0,) (10)

To find the scattered field we substitute either (9) or (10), depending on the
polarization, into (5) and (7). This case of the perfect dielectric is reasonably
straightforward. A more complicated situation occurs when the case of light
scattered from an interface between a dielectric and air is considered when the light is
incident from the dielectric side of the boundary. In this case the Fresnel coefficients
are [9] CosB 1- n,1_ 2 sin2O0

cos 0, + nl - n2 sin2 6,' (11)

ncos 01+/l -_n 2 sin 2 0i
R. o~~v1nsi2i (12)

Then, when
n2 sin 2 01 > 1,

the reflectivities are complex. This occurs when the critical incidence angle 0, is
reached and we uave total internal reflection

0, =sint (I).

"The final case considered is that of the general conductor or metal which involves

a complex refractive index n-.n + ioc. In this case the reflectivities are [9]

(n2 cos2 01_ q2 cos2 ) + (C2 co2 01 -q 2 sin2 v)
(ncos0+qcosy2 +(icos0+qsin'y)l

+2i (c cos 01 cos y- nq sin7 cos O)

(ncosOi+qcosy)z +(Pccos0 1+qsiny) 2 ' (13)

cos
2  -(nqCOs y -q sin y) 2 -(•qCOS y +nq sin y)

2

Rs=(COS 0, + ("~q COS y- _ q Sin y))2 + (K¢q cos y + nq sin y)2

cos si(x q cos y + nq siny) (4-- 2;, • 2• 2, (14)
(cos 0| + (nq cos y-- Kq sin y))2 +(cq co-9 y+ nqsin y)

where
' (n2 - K2) 2 2t 2nK 2 •2

q)- - + sin2 0, (15)
(2n+,c 2 )Jsin 0) W+ IC

2 ) 2

(n2_ +K2) sin-' 0

tan 2y 2XK (16)

S(n
2 + Pc2 )2 si O0

It should be noted that the contribution from light paths that traverse inside parts

of the surface are no. taken into account. It is believed that such terms are small due

to the requirement for large ar.gles of deviation of refraction to dit ect light back into
the space above the surface.

. ."
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3. Results
The Kirchhoff method equations have been discretised in the usual way

(assuming that values of parameters remain constant over a suitably small range of
variables) and programmed into a Sun 4 computer. A surface of length 30A was
discretized into 200 segments giving a segment length of 0-1 5. Computation times
were 7 minutes per frame for the dielectric cases and 10 minutes per frame for the
metal with approximately 600 frames averaged for eacl graph. Computational
results are shown in figure 1 with experimental results [10] shown in figre 2 for
comparison. The surface parameters are: standard deviation of height u= 1-18 jn,
correlation length = 2"97 pm, with a wavelength of 0-633 pxn (He-Ne red) and a
refractive index of n = 1-41. The scattered energy as a function of incidence angle for
both methods is given in table 1,

The Kirchhoff and exact methods agree quite well both for scattered energy and
the intensity distribution up to -30* incidence. In both the s and p cases the
Kirchhoff scattered intensity distribution is rising at scatter angles near + 90* and for
p-polarization the energy scattered is twice its value for the extinction case. The
cause of this may be that the effect of light paths that pass through the material are
becoming important, or the approximation used for the shadow functions, i.e.
straight line or geometric shadow functions, is less valid when incidence shadowing
starts to have an effect. The second reason is supported by the fact that for the
perfectly conducting case the unitarity was from 6 to 9% greater than unity. There is
reasonable agreement with the shape of the experimental curves, although note that
the experimental values have not been normalized. However, from the Kirchhoff
results it can be seen that the double-scattered energy is an order of magnitude down
on the single scatter for s-polarization (TE) and several orders of magnitude down
for p-polarization (TM). This means that scattering from this dielectric surface is
mainly a single-scatter effect, so that even though enhanced backscatter can be seen
in the double-scatter curves, the effect on the total scatter curve is very 3mall., This is
probably because only a small part of the energy is reflected at each interaction point
on the surface.

Assuming that in this single-scatter regime the dominant term from each part
of the surface is the specular term it can be shown that the minimum in the
p-polarization case is directly related to the Brewster angle. Figure 3 shows the
situation where one of the discretized surface facets is illuminated at the Brewster
angle and so will not scatter p-polarized light. Then 0,, the scatter angle, is given by

-0.ý01+ 20a,

since 01 is negative. For n= 1.41, the Brewster angle is

08 O=tan- (1"-41) ý_550.

'hus at 0i= -30*, 0.= -80 and at 81= -60o, 0,= -50°, which agrees reasonably
well with the observed Wngle at whici. the minimum occurs. Another feature of the
curves which can be explained using the single-scatter model is that the s and p
curves have the same value at backscatter for all incidence angles. If the specular
term is dominant then the backscatter results from parts of the surface which are
normal to the incident direction. The Fresnel coefficients for normal reflections have
the same modulus but different sign for s and p, so the scattered intensities are the
SSame in the backscatter direction.

-<
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p pol. S pol.

40 4074a 4o
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30 30a
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i 20 ,20
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O10*0

-90 -60 30 0 30 60 90 .90 -60 -30 0 30 60 90
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1100

OxlO" -10: ,- • -¶•-' ''~

-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90

Sctter angl Scatter angle

Fg•ure 1. Scattering cross-section as a funztion of angle for p (right) and s polarization,
(0* (top), -- 3W (middle) and -6Wo incidence from a dielectric surface n=1-41
with a= 1-18 pm and z=2-97 pm. Kirchhoff toul (solid line), single (oooo), double
( + +++ )and ext;nction calculation (dotted line). Backscatter is marked by the vertical
dashed line.
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o 4000
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S1000-

0-
-90 -60 -30 0 30 60 90

10000-

_ 800002 *

2 6000

0S2000-O •

4g0 -6at -30 0 30 60 90

Scatter angle

Figui 2. Expe-imental curves for scattering from a dielectric as in figure 1: s (upper curve)
and p (lower cut ve) polarizations.

Table i. Scattered energy as a function of incidence angle (dielectric).

Incidence Kirchhoff Kirchbbff Kirchhoff
angle single double total Exact

s-polarization (TE•

00 0-)31 0-0012 0-031 0-035
-300 G-07 0-0028 0-038 0-043
S- 6(; .08i 0-0022 0-079 0-080

p-polurization (TM)

0° 0013 0.0001 0-0180 0-020
"0-(18 0-0001 0-0181 0-018

-600 0-043 0,0002 0-043 0-018

i ° 4
Io e

I'
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Normal to averago

G~Is

UghtS rfcesegment

Light path

Figure 3. Geometry for scattering at Brewster angle.

The results for the inverse dielectric case for the Kirchhoff method with
s-polarization and the same material as above (n= 141) are shown in figute 4. The
scattered energy is shown in table 2.

'I In this case, the double scatter forms a much larger part of the total scattered
energy so that a strong enhanced backscatter peak is expected. Indeed, this is seen at
low angles of incidence but the peak dies away quickly so that by - 20' it has almost
disappeared completely. The steep slope of the double-scatter curve between W0 and
20' gives this effect.

The peak in the single-scatter curves at large negative angles can be explained in
the same way as the Brewster angle effect above. The scatter angle corresponding to a
local angle of incidence equal to the critical angle is given by

-0,=0j+20o,

where the critical angle 0, is given by

60 --sin- t  t 45

giving 0, = -70° for 6i = - 20', This angle should give the start of the region of total
internal reflection. Shadowing counteracts this effect by blocking light scattered at
high angles, causing the reflecrivities to come down again toward -90*.

The final case considered is that of scattering from a metal, in particular gold, at
A= 0-633 pm, with thtu refractive index n = 0" 167 + i3-149 ( 11]. Previous comparisons
of experiment and theory have used calculations from perfect conductors, so it would
be useful to find the effect of finite conductivity on the scattered intensity. The
scattered energy for two angles of incidence is given in table 3.
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Figure 4. As figure 1, for scattering from a dielectric-air interface from the dielectric side:
W° (top), -10' (middle) and -20° incidence angles.

Table 2. Scattered energy (inverse dielectric).

Incidence Kirchhoff Kirchhoff Kirchhoff
angle single double total

00° 0"058 0-037 0-095
- l0° 0-070 0-043 0-114
- 20° 0-097 0-050 0-148

c1 [

S.. .. ... .. 
w m . m • • • 
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Table 3. Scattered energy for two different angles of incidence (gold).

Incidence Kirchhoff Kirchhoff Kirchhoff
angle single double total

s-polarization (TE)
00 0-811 0-105 0-902

-40* 0-847 &-075 0872

p-polarization (TM)

0. 0-783 0-112 0H882
- 40' 0-829 0-069 0-849

0.8- 0.8-

S0.6 0.6

• 0.4- 0.4

S0.2- .

C'1
I t

0.0. i ": 0.0

90U6e .30 0 30 60 go -90 l60 -30 0 30 6o 9o

0.8-
0.6 0.6 -

0.4- 0.4"--I

o 0.2 0.2-

-90 -6c" 3tQ 0 30 so so -90 .- 0 ,, '2 0 30 60 90

cattar 'ýPe Scatter angle

Figure 5. As figure I. for a metal surface at 00 (top) and -40* incidence. Kirchhoff total
(solid line), single (oooo) and double (+ + + +) renormalized to have unit area iader
the total curve. The dotted line is the Kirchhoff total for the same surface as a perfect
conductor.
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These values of scattered energy could be used as a check on the parameters of the
surface material, allowing a check on whether there is an unexpected effect present in
the scattering process, for example, if the metal coating is too thin or if there is some
granulation of the surface material. Here, to compare the perfect conductor and
metal results, the two cases arm normalized to the same area under the graph (as has
been done on previous experimental results) and compared directly. Figure 5 shows
the results. There is very little difference in the metal and perfectly conducting
curves, showing that finite conductivity has very little effect on the scattered
intensity distribution.

4. Conclusions
Using the Kirchhoff double-scatter contribution it has been shown that

scattering from a particular dielectic surface is mainly a single-scatter effect when the
light is incident from the air side, but when the incidence is from the dielectric side
much more light is double scattered. We believe that the reflectivities at each
interaction are very low in the first case and total internal reflection gives relatively
nmore double scattering in the second.. The results agree well with exact calculations
using the extinction theorem, except at higher angles of incidence where it is thought
that the approximation used for shadowing becomes less valid. Scattering from a
metai surface was compared with scattering from a perfect conductor and found to
agree well. This shows that the effect of finite conductivity, at least for very good
conductors, is purely to reduce the scattered energy and not to alter the scattered
intensity distribution.
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Kirchhoff Prediction

Correlation:

<E(0= exp[-(2k )(osoi -cos(Oi+60))]

Where a is the RMS surface height.

k is (2nix)

X is 633 nm for all graphs

* j!

(,See also "Real-time measurement of surface
1(roughness by correlation of speckle patterns'
! D. Leger and J.C. Perrin.
(jJ. Opt Soc. Am., Vol. 66, No. 11, November 1976
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Measurements of light scattering by a characterized random
rough surface

J C Dainty, N C Bruce and A J Sant
Blackett Laboratory, Imperial College, London SW7 2BZ, UK

Received 26 November 1990

Abstract. Measurements are presented of the angular distribution of four wavelengtl, of
light scattered by a one-dimensional random rough surface, whose probability density
function is Gaussian with a standard deviation a = 1.22 ± 0.02jpm and whose lateral
correlation function is also Gaussian with l/e width r = 3.17 ± 007,pm The wavelengtls
used are 0.63, 1.15, 3.39 and 10.6 pm. The surface is used in two forms: coated with gold
and as an almost lossless dielectric. The results are compared to those predicted by a
double scattering form of the Kirchhoff formulation. Agreement is good at small angles of
incidence but less good at larger angles of incidence.

1. Introduction

The experimental observation of enhanced backscattering from random rough surfaces
of large root-mean-square slope, first reported by Mendez and O'Donnell [1,2], has
stimulated a re-examination of the problem of light scattering in the past few years. The
main progress to date has been the development of 'exact' numerical codes for the
solution of Maxwell's equations from a one-dimensional surface illuminated vith eit,•er s
(i.e. m) polarization or p (Le. Tm) polarization [3-7]. With s polarization, the electric
vector is parallel to the grooves, whereas with p polarization it is perpendicular to the
grooves, as in figure 1 (this figure also shows the sign convention used for the incident
and scattering angles). An important feature of the work of Mendez and O'"onnell
was that the surfaces were relatively well characterized, with Gaussian statistics for the
surface height and a single-scale Gaussian correlation function. Since the statistics of
the surface were known, a critical comparison between experiment and theory could be
made with confidence.

The shape of the scattering cross section curves with angle of observation for
high-sloped surfaces is quite different from that for simple low-sloped ones and early
numerical results [3] were encouraging since they were in fairly good agreement with
the experimental ones particularly at near-normal incidence. In order to carry out a
more critical comparison between real experiments and numerical ones, it is important
that the surface is well characterize4, and also helpful if a range of wavelengths are used.
The results presented here are intenced to supplement those already reported (8-10]
with the aim of providing a reliable body of experimental data for comparison with
numerical work and analytical theory. The surface used is one-dimensional, for two
reasons., firstly, it can be characterized much more accurately than a two-dimen•ional
one, since a sharp chisel-shaped stylus can be used in a surface profilometer; secondly,

0959-7171/91i03S029--11503.50 0 lOP Publishing Ltd S29
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S

(incident fiel&)

(scanered field)

Figure 1. Polarization and angle notation for in-plane scattering from a one-dimensional
rough surface

'exact' numerical calculations of the light scattering are only feasible at the present time
for the one-dimensional case.

When comparing experimental measurements of light scattering with numerical
computations, it is helpful if the numerical results provide some physical insight to the
scatterin- process. For example, it is believed from ti-e experiments that the mechanism
giving rise tc the enhanced backscatter peak is multiple scattering; however, numerical
calculations based on exact theory do not separate the single and multiple scatter terms,
and therefore do not provide the insight that )s desirable (however, iterative solutions
do separate the single and multiple scatter terms). For this reason, we have written
numerical code based on a multiple (double and triple) scattering extension of the
Kirchhoff boundary condition, including the effects of shadowing (see [11] for details
and further references). In section 3 of this paper we compare the results of this code
with the experimental results and 'exact' numerical code.

2. Experimental results

Master surfaces are produced by exposing a thick layer of photoresist (• 12pYm of
Shipley S 1400-37) to several statistically independent laser speckle patterns. Two versions
of the surface were prepared using a replication technique [8], one being coated with

IOWOO A of gold and the other being an almost lossless dielectric of refractive intdex
n = 1.41 (at A = 0.63 pm). Figure 2 shuws the probability histogram of surface height
and surface autocorrelation function, as measured by a Talystep profilometer whose
stylus is a pyramid of 700 apex angle truncated by a flat region of ý 0.5 pm. Both are
good fits to Gaussian fuictions, with the root-mean-square height ai = 1.22 ± 0.02 pm
and I le correlation length r = 3.17 ± 0.07jpm. The angular distribution of the scattered

.__ =... . . . .... .. . . .
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Figure 2. Probability histogram (upper) and autocorrelation function (lower) of the surface
height fluctuation as calculated from Talystep measurements for the surface (#46) used in
this paper.

light was measured at four wavelengths (0.63jam, 115 pm, 3.39jpm and 10.6 pm) usi,':
the equipment described in [10]. For each angle of incidence, measurements are made
with p-polarization incident and p-polarization collected ('p-p' scattering) and s-
polarization incident and s-polarization collected ('s-s' scattering); no crossed polarized
components were detectable. For a perfect conductor, these measurements give a
complete description of the scattering characteristics of the surface, but in general four
scattering coefficients are required for materials of finite conductivity; these can be found
by measuring the polarization of the scattered light for various input polarizations. Also,
the measurements reported here yield the relative scattering cross section, as no absolute
calibration is performed.

The relative scattering cross sections for angles of incidence of 00, - 30° and -60"
and the four wavelengths are shown in figures 3 and 4 for the gold-coated surface and
figures 5 and 6 for the dielectric surface. The enhanced backscatter peak, where present,
occurs on the right-hand side of the graphs (i.e. at positive angles, see figure I for the
sign convention for the angles) and any specular component is on the left-hand side

S•' (i~e. negative angles), for the 10.6jun measurements, the specular peak was very muchgreater than the diffuse component and is not shown. A few features are of particular note.
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Figure 3. Relative scattering cross section as a function of scattering angle for the gold-coated
surface, for angles of incidence of 0', --30' and --60*, for p-p scattering (open circles) and
s-s scattering (crosses). The left-hand column is for a wavelength of 0.63 pm, for which
/,/A - 1.93 and /nA = 5.02 and the right-hand column for A - 1.15 pn, for which /r/A = 1.07

and /AI = 276. The enhanced backscatter peak, where present, occurs at positive angles
(right-hand side of each graph).

(1) The enhanced backscatter peak and sidelobe structure are clearly visible for the
shorter wavelengths at an angle of incidence less than approximately - 300 for the
gold-coated surface; the width of the peak is proportional to the wavelength. The peak
is not observed for the p-p scattering at 10.6 pm for the gold surface t,: R!'r scattering
from the dielectric.

(2) With th, exception of the p-p case at 10.6 pn, the p-p and s-s scattering by the
gold surface are very similar; for the dielectric surface, however, the p-p and s-s scattering
cross sections are quite different, as one might expect by analogy with reflection from

Sa planar surface. Using a value of n = 1.41 for the refractive index of the (almost lossless)
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Figure 4. As for figure 3 but wavelengths of 3.39 pm (cr/4 = 0.36, t//A = 0.94) and 10.6,um
(a/lA = 0.12, r/n = 0.30). For the 10.6 Am curves, the angles of incidence were 0°, -20' and
-40°, The (strong) specular component in the 10.6 pin curves is not shown

dielectric gives a Brewster angle of -- 55°. Considering single scattering to be the dominant

mechanism and treating this as a reflection from a locally plane surface gives an

expected minimum of the p-p scattered intensity at an angle equal to approximately

(110* - incident angle): the angles are roughly in accordance with this simple picture.

The s-s and p-p scattered intensities in the backscatter direction appear to be almost
equal to each other for all angles of incidence and wavelengths, for the dielectric.

(3) The overall shape of the curves is dramatically different from the Gaussian-type
shapes (centred on the specular angle) normally encountered in scattering from

low-sloped surfaces.
The principal purpose of figures 3 to 6 is to provide a reliable set of data for

comparison with numerical calculations, and analytical theories should any become
p available.
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Figwe S. As for figure 3 but for the dielectric surface, no,,, -- 1.41, n, Is = 1.40. The vertical
scale is not the same as that used in figure 3 (both are relative scattering cross sections).]

3. Kirchhoff multiple scatter approximation

One can compare the above experimental results to those of' exact' numerical calculations
[• based on the extinction theorem and its extensions [3-7], and some comparisons of
i experiment and calculations for a perfect conductor were given in [ 10). Although such
i. comparisons are valuable, one problem with the 'enact' numerical solution is that it
!' gives little physical insight into the problem. We have therefore attempted to extend

the Kirc~hoff approximation (i.e. tangent plane approximation for each scattering event )
to double (and multiple) scattering [11).

! The numerical calculations were carried out using the method described in [ I11 ] for
Sa perlect conductor; typically the energy ci~nservation (unitarity) held to better than
S~3 % considering just the single and double scatter terms for surface # 46 (except for the

S7 . ... .... . . . .... .
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F'tm• 6. As for figure 4 but for the dielectric surface n3.39 = nIo.6 1..

-60* results for which the departure from unitarity is ;t 6 %) and the results are averaged
over approximately 103 realizations. Figures 7 and 8 show the results of the calculations

Sfor A• = 0.63/anm and 1. 15/inn respectively, for incident angles of 0°, - 30* and - 60* and
i :' "s-s and p-p scattering. Each graph shows the single, double and total scattered intensity.

t The enhanced backscatter peak occurs only in the double scatter component, showing

i• " conclusively that the enhancement is a multiple scattering effect The enhancement is
S~on the order of a factor of two in the double scattered component for all angles of

: < incidence, but the enhancement in the total intensity is much less than two and decreases
:, with increasing angle of incidence due to the fact that the double scattered intensity

i, also decreases with incidence angle.
Figure 9 compares the total scattered intensity for s-s scattering from figures 7 and

, ~8 with the results of 'exact' numerical calculations (based on the extinction theorem
)it ~ method for a perfect conductor [3]) and the experimental results of figure 3, for i

C)'F
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Figure 7. Numerically calculated scattered intensities for a perfect conductor, using the
double-scattering Kirchhoff approximation, for angles of incadence of 00, -30' and -60o
and s-s scattering (left) and p-p scattering 'right). The wavelength is 0.63 pm. Each graph
shows the doubly scattered intensity (lowest curve), single scattered (middle) and total
intensity (coherent sum) (top curve).

\4

A = 0.63 pm and 1.15 pm at three angles of incidence. The two numerical calculations
agree wel, showing that the Kirchhoff approximation is reasonable for these surface
parameters (the average radius of curvature, defined as the inverse of the standard
deviation of the surface curvature 2,/30-/T2, is ,t2.4pm for surface #46) and both
agree well with the experimental measurements for zero angle of incidence. However,
there is a clear discrepancy between experiment and numerical calculation for the - 30*
and -60° angles of incidene. (This general behaviour is also shown in the case of p-p
scattering)

J.-.
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Fignre 8. As for figure 7, but wavelength of 1.15 pa.

One possible cause of the discrepancy could be that the calculations are for a perfect
conductor, whereas the experiments are for a real metal (gold). However, calculations
by ourselves and others [5] show that, for these -'alues of Rms surface height and
"correlation length, there is very little difference between the results-for gold and for a -
perfect conductor, particularly for s-s scattering. One problem with most methods of
calculation, including that used here, is that a very small length of =d=fac i..."-,
giving rise to the possibility of an 'end-effect' error (e.g. due to long-range surface
plasmons); however, the method of calculation of-Saillard and Maystre [7] uses an
extremely long length of surface with good agreement with the other calculations and
poor agreement with the measurements at larger angles of incidence.

It s6ems, therfeore, that there may be some aspect of the experiment that does not
correspond to the calculations. Previous results for a Lambertian diffuser have

l - .
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Filgure9. Companison of Kirchhoff calculation (from figures 7 and 8), 'exact' numerical

calculation and experiment (from figure 3), for s-s scattering at A = 0.63/pm and 1.15 pmo,
and angles of incidence equal to 0°, -30' and -60'. The solid curves are the Kitchhoff
calculation, triangles the 'exact' calculation and crosses are the experimental results. Note
the good agreement between the two numerical calculations but the departure of the

i experimental results for larger angles of incidence.

* : demonstrated that the scatterometer measures the correct quantity [1I0]. The measure-

* I' Imerit of surface propertie might be in error. If one calculates the scattered intensity
Sfor, say, -~60o angle of incidence for a surface that has an RMs roughness 50% larger

than the measured value, then reasonable agreement is obtained between experiment
and numerical calculation. However, (a) it is extremely unlikely that such a gross error

Q F)

•' could occur (stylus tips effects are discussed by Church [12]) and (b) the agreement
!, for 0' angle of incidence is then very poor indeed, particularly as regards the location
•, of the minima around the backscatter peak. Ishimaru and Chen [13] have shown that
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a departure from Gaussiaty of the. correlation function could be responsible for the
discrepancy, and the measured coirelation does show ? small departure from the
Gaussian shape. However, it is notoriously difficult to estimate the correlation function
of stylus traces and the departure shown in figure 2 is characteristic of inadequate
de-trending of the mean; the method of manufacture of the surfaces strongly encourages
a Gaussian correlation of surface height. The cause of this discrepancy for larger angles
of incidence is therefore not resolved at ithe. present time.

4. Summary

A set of scattering data for a one-dimensional surface at four wavelengths, three angles
of incidence and two materials has been presented for critical comparison with numerical
calculations and theoretical studies. A multiple scatter extension of the Kirchhoff
approximation has been shown to provide additional physical evidence that the
predominant cause of the enhanced backscatter peak is due to multiple scattering. There
remains a significant disagreement between experiment and numerical calculations for
large angles of incidence the cause of which is still unresolved.

The data presented in figures 3 to 6, together with sample Talystep traces, is available
on a PC- or Macintosh-compatible diskette on application to the first author.
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The Mueller matrix for rough surface scattering
using the Kirchhoff approximation
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The Kirchhoffapproxiniation is used to find the scattered intensities and the Mueller matrix for a gauss•an surface with stan-
dard deviation of height a= 1.22 pun and correlation length T=3.18 gIm using a wavelength of A=0.633 tun. The cases of gold
(n= 0.167+i 3.149) and dielectric (n= 1.41 ) surfaces are considered. Results are compared with experimental observations and
are shown to give good agreement. The single and double scattered intensities are shown to be fully polarnsed for both cases
wherxfts thc total pt.glepl doub•)e shows a strong unpolarised component for the gold case. This effect is understood by
vonsidering that the single and double scatter terms are partially coherent and at right angles to each other.

1. hlarduction with s and p the same amplitude with a x/2 phase
difference). In the ss and pp intensities these phase

- Scattering of electromagnetic waves from one-di- terms are not used since the modulus squared of the
* mensional rough surfaces has been a topic of much scattered field is calculated.

interest in recent years, the motivation for a great In calculations of the intensity distribution the
deal of this work being the phenomenon of enhanced scattered field is first evaluated and the modulus
backscatter[11,2]. Experimental [3-5] and theoret- square then taken. This means that the phase term
ical [6-101 curves for the distribution of scattered can be found directly from the calculations. How-
intensity for the two cases of s-polarisation (TE) in- ever, in experiments only the intensity can be mea-
cident and scattered (denoted by ss) and p-polar- sured so the phase difference cannot be directly
isatidn (TM) incident and scattered (denoted by pp) found. Instead the scattered intensities for certain
havetbee found. These case have been considered,ha • oun. Thse aseshav bee cosideed, combinations of incident and detected polarisations
since for a one-dimensional surface (i.e. a surface for cobntnsficdetadeetdplritos
sinche heigr t a one-dintens d su da (irection) a hrf e for are required to find the Stokes parameters of thewhich'ae height is constant in one direction) there scattered light [I I 1,.
is no scattering from s to p or from p to s; s and p
are the two fundamental polarisations into which all In this communication the recently developed
other polariaed cases can be decomposed. However, multiple scattering Kirchhoff approximation (KA)
as has been pointed out recently [51, the ss and pp [12-161 is used to calculate the Stokes parameters
intensity distributions do not give a full represen- for a particular surface. The advantage of the KA is
tation ofthe scattering process for these surfces This that the single and double scatter terms can be sep-
is due to the fact that the relative phase of the ss and arated i.e. it is possible to separate light paths inter-
pp scattered fields is not contained in the ss and pp sectins the surface profile once or twice. The cal-
intensities. For example an incident field polarised culation has been performed for a gold surface with
at 450 to the plane of incidence may give a coin- refractive index n=0.167+i3.149 (at A=0.633 gmo)
ponent of the scattered field circularly polarised (i.e. and a dielectric surface of n= 1.41.,
an incident field with s and p components the same The theory of the calculations and experimental
amplitude and in phase could give a scattered field procedure is discussed in sect. 2 and comparisons of

0030-4018/92/S05 00 © 1992 Elsevier Scienre Publishers B V., All rights reserved. 471
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numerical and experimental results are given in sect. xk(m2 sinO-cosO)L (x 2, z2 )
3.+i(l-R 2 ) OE(x 2 z2)

+ -I exp(ik'R2) dxdx2,Un2 j (3)
2. Theory (3

where S' represents the shadow function for the scat-

In the Kirchhoff approximation the total field on tered radiation, m2 is the gradient of the surface at

the surface is approximated by the incident field plus the second point and R2 is the Fresnel reflection

the reflected field at each point. The reflection is as- coefficient at th- second surfaw. point. The shadow

"sumed to be from a plane to permit Fresnel reflec- functions used here are geometric (straight line)

tion coefficients to be used. This gives a condition shadow functions and were calculated explicitly for

for the approximation to be valid -- the radius of cur- every point (or combination of pc ints) by perform-

vature at each point of the sufiface must be large ing a ray trace. If the ray of intere.ýt was intersected

compared to the illuminating wavelength. The single by the surface at any point the shad%,w function took

scatter term is given by [ 12,131 the value zerx and the contribution 'rom that point

1/2 was neglected. Eqs. (2) and (3) tog ther represent
"" ý exp(if) I+os(6+O,) the double scatter contribution. An) material de-

E ( \r) 2 cos 0+ cos 0, pendence is entirely contained within tle Fresnel re-

X fS(x', z')Rexpfi(k, -k)-R] dx', () flectivity coefficients R, R, and R2. Lighf paths trav-
r ersing inside the material are not inclu led in this

romethod but it is expected that the contriiý' tion from

where 81 and 0 are the incident and scatter angles re- such paths is small r, ince the necessary seat er angles
spectively, 9 is a phase term independent of x', R is are large compared to the refraction anglts of the
the position vector of the point (x', z'), R is the materials considered. The simplest case occtrs for a
planar reflectivity for the tangent at (x', z') and S(z', perfect conductor for which R= I for p-polarisation
z') is a shadow function depending on both 0, and and R= -I for s causing most of the above teims to
0. The double scatter contribution can be considered drop out, leaving only one contribution for each case.
as two terms, first the field at any surface point due Eqs. (1), (2) and (3) are discredsed and oro-
to fight from one other surface point is grammed into a computer. Intensity curves are ml-
E5(x 2 ,z 2 ):= IS (+R,)[m k(X2 x,) culated for particular surface piofiles and the inttn-

sities averaged over typically 800 different surface-
of the same statistics to produce the final curves.

k(z ] The convergence of the seriesO given by the sum of

r12  HP 1 (kra2 )-(1--R1 )ik(m, sin0, the Kirchhoff single scatter plus double scatter plus
etc. has not been proved rigorously. However, cal-

) culations of the triple scatter term show that the in-
+cosO,)H•V)(kr12)j.E,(x,,z 1), (2) tegrated energy in this order of scattering is much

smaller than in the double scatter (approximately
with S12 a shadow function depending on O, and the 1/50th the double scatter). While this does not prove
vector between points I and 2, m, the gradient of the the convergence of the series, it at least shows a re-
surface at the first point, R, the Fresnel reflection quired effect - the relative importance of the results
coefficient at the first point and HSO(kr,2 ) and of higher order calculations should decrease as the
HP'(krA2 ) the zeroth and first order Hankel func- order increases.
tions of the first kind. The total field due to all corn- The scattering of the field can be denoted in ma-
binations of first and second points is trix terms as

S E.2()_2_ fxpi f Sf (I+R,) (E.,) (fPP 0)(E,o (4)
: \•r/ 4 r E./= 0 f,/E.P
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where 4 and E, are the scattered p and s fields, Eq, i.e. the final Stokes vector is just given by the sep-
and E, are the incident p and s fields and f, and f= arate non-zero Mueller matrix elements. In the cal-
are the field scattering coefficients. This can be writ- culations Ep and E, are set to 1/.,f/2 to give an in-
ten since any polarised state can be decomposed into cident unit amplitude plane wave linearly polarised
s and p components and there is no depolarisation at +450. The scattered s and p fields are found from
for scattering of s and p from one-dimensional sur- eqs. (I ) to (3) and the Stokes matrix, and hence the

faces. Note that all the terms represent complex Mueller elements, are found by using eq. (5).
numbers and are fu•actions of angles. The Stokes vec- Experimentally the Mueller matrix elements are
tor is given by four parameters which give for the found by measuring the scattered intensity distri-
scattered wave f I I [ bution using suitable combinations of incident and

I I=<Ep Ep+ E.E>, Q=<EE;-E.E*> detected polarisations [ 5,11,14p].The terms ni and
M12 are measured by using p-polarisation incident

U=<EOE:+E.Ep*>, Vfi<EpE.-EsE;>, and p detected (given by I,) and s incident and s
5 detected Q). The signals resulting are added for m,

and subtracted (p-polarised-s-polarised) for Mr 2.Swhere < > denotes the average over different sur-
i M33 is found by scattering light polarised at +450

faces of the same statistics. These give a full char- then finding the difference of the scattered light po-
acterisation of the polarisation properties of the scat- latnisedat +45* (i+) minus that polarised at -45*

tered wave. (I ). The final term is found by again using incident
The Stokes parameters of the scattered field are light polarised at + 450 and finding the difference of

related to those of the incident field by the Mueller left circularly scattered light (IL) minus right cir-
matrix, M cularly scattered light (IR) [17],

S=VMS 0 , (6) The four Stokes parameters obey the following re-
lation [18,19]

where M is a 4x 4 matrix which, for the one-dimen-
sional case is given by 12 •Q 2+U 2 +V 2 ' (10)

Mill Mn,2  0 0 the equality holding for fully polarised fight. For the( 0 0 m 33  ,3 (7) this expression are given by eq. (9). It is thus pos-

0 0 -M 34 "1 33/ sible to separate the polarised and unpolarised com-
ponents of the scattered energy for this situation, the

This matrix describes fully the scattering properties polarised being given by (Q2 + U2+ V2) "/2 and the

of the target surface. For an incident polarisation at unpolarised by I- (Q 2+ U2+ V2 )112.
+450 (halfway'between the s and p polarisation di-
rections) the incident Stokes vector is

(8) The validity of using the Kirchhoff approximation

S =0is limited to surfaces containing radii of curvature
greater than the illuminating wavelength to permit

so that the final Stokes vector of the scattered light the use of planar reflection coefficients in eqs. (I),
is, from e. (6) (2) and (3). The applicability of the method to the

"I mil surface used can be verified by noting that the radius
S m= 2 of curvature is appreximately the inverse of the sec-

M 13_ (9) ond derivative of the surface profile. As the height

distribution is gaussian so is the second derivative

j j~ ~ 34with a standard deviation aj,, given by
- 473
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a,. =2f3 art, Mn 2 term is very small for both single and double
which means that there is very little difference be-

where c6 is the stanidard deviation of the gaussian tween the s and p scattered intensities. In the die-
probability distribution of heights and r is the lIe lectric curves this difference is more important, as
level of the gaussian autocorrelation function for the expected, since the Fresnel reflection coefficients
surface of interest. This gives a value of ah, =0.42 show a bigger difference for a dielectric than for a
I±m ' frthe case considered here (surface #46 with good conductor.
o= 1.22 lsm and -= 3.18 lim). Therefore, approxi- The total (single and double) scattered intensities
mately 67% of the radii of curvature will have values are shown in figs. 3 and 4 for the gold and dielectric
greater than 2.4 pra, so most of the curvatures have cases respectively and are compared with the exper-
values greater than the wavelenglh leading to the imentally measured values. In the gold case the
conclusion that it is reasonable to expect the Kir- agreement is reasonably good at low angles of inci-
chhoff approximation to be valid in this case. dence apart from the m34 term which is much smaller

The calculated unitarity or relative scattered en- in the calculations. As in other measurements [ 8,12]
ergy for the gold and dielectric surfaces are given in the agreement at higher angles of incidence is not so
table 1 for the single, double and total (single plus good; this appears to be the case for all methods of
double added coherently) components of the fun- calculation, not just the Kirchhoff method. The rea-
damental polarisations s and p. The values of total son for the difference in the M34 term, which is the
scattered energy for these surfaces are less than one difference between right and left circularly polarized
due to the finite conductivity of the surface materials light, may be that the refractive index of the material
causing light to be transmitted or absorbed. is not exactly as used in the calculation so that the

Figs. I and 2 show the Kirchhoff single and double phase difference between the s and p scattered com-
scatter terms i'or the gold and dielectric cases re- ponents is different to that expected. The agreement
spectively. Note that there are different scales on the for the dielectric case is much better., Since the re-
single and double graphs for both situations. The fractive index is real for this material there is no
vertical dashed line on the graphs marks the incident scattering from linear to circular polarisation so M34
direction so that light scattered in this direction is is near zero in this case.
backscattered. Enhanced backscatter effects can be The degree of polarisation of the scattered light is
seen in the double scatter terms only, as expected illustrated in figs. 5 and 6 for the calculations of the
from preious work 12-16 ].. In the gold case the single and double sc -ter terms and figs. 7 and 8 for

Table I
God surface

Incidence s-polarisation p-polarisation

single double total single double total

0. 0.871 0.085 0.943 0.869 0.078 0.925
20° 0.861 0.010 0.949 0.859 0.084 0.911
40' 0.874 0.076 0.904 0.869 0.078 0.920

Dielectri surface

Ixidence s-polarisation p-polarization

single double total single dGuble total

0. 0.033 0.0008 0.033 0.021 0.00004 0.020
20* 0.035 0.0017 0.036 0.019 0.00006 0.019
40 0.045 0.003 0.045 0.017 0.0001 0.017
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Fig. 5. Graphs of the polarised and unpolarisod scatter components as a function of scatter angle for 0o incidence (top), 20* incidenceV (middle) and 400 incidence (bottom). Single scatter (left) and double scatter (right) for gold coated surface #46.
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the total and epen'rimeatal curve. In both the gold SiNGLE DOUBLE
and dielr.ct•c cases th, single and double scattered INCIDENT SCAMIP SCATTER

intensities J.igs. 5 and 6) are fully polatised whereas s
in the total and experimenaW zurves (rigp. 7 and 8) __f 7
the gold shows a large unpolarised component and 2a zi
the ditectric case is again almost fully polarised. It
is telieved that this is caused by the partial vcher-
ence of the single and double scattered fields. Figs. / /
I and 2 show that mi3 is negative for single scatter I
and positive for double scatter for both materials.
The experimental inte.pretation of M33 is ,hat it rep-
resents the difference in the intensity polarised at
+450 and the intensity at -450 for incident polar-
isation at +45 *. This means that the single and dou-
ble scattered lields have- linearly polarised compo-
nents at right angles to one another. For scattouing
from a pefect conductor the singly scattered field is
the same polarisation a, the incident field but &he
doubly scattered is orthogonally polarised to the in-
cident (fig. 9). Also note that the total curves can be
obtained simply by summing the single and double
curves i.e. the single and double terms are largely in-
oherent [12-16]., Two inoherent omponents at Fig. 9. Figure showing +45" incident rolarisaton and resultanthrig t a e g ] resultant field which has a tarying single and double scatter pWiarsations tor a perfect conductor.
righ angles give a reg The dots represent an electric field out of the plane of the dia-
polarisation (the phase between the two components gram, the crosses an electric field into the plane. In the boxes at

is not fixed) [ 181 and so an unpolarised component the top of rhi. diagram an arrow downwards represents an s field

results. It is important to note that the single and ott of the plane. Note the single scatter is co-polarised with the

double scattered intensities are fully polarised but incident and the double scatter is cross-polanseW.

because they have components polarised in different
directions and are incoherent they produce unpolar- scatter which gives a term polar,',ed in the same di-
ised light when combined. In the calculations the un- recticA as the single scatter. Even if these terms are

polansed component contains the backscatter peak incoherent the piane of polarisation will not vary.

since the enhancement is contained in the double Therefore, since the triple scatter is expected to show

s:attered component and so gives an unpolarised re- an enhanced backscatter peak, a peak in the pola-

suilt 'wen combined with the single scatter term. The rised component will result. The triple scatter can be

same effect will occur in scattering from two-dimen- expected to decrease as the angle of incidence is in-

sional surfaces for scattering in the plane of inci- creased (cf. the double scatter term in :efs. [ 12] and

derce although a simple geometrical effect could ac- [13]) so that the experiment and theory become

count for the unpolarised component out of this more compara" le for higher angles of incidence.

plane. This effect is not seen La the dielectric curves
simply because the double scatter is a much smaller
effect for this case. In table 1 the double scatter en- 4. Conclusions
ergy is always one or twu orders of magnitude down
on the single scatter for the dielectric surface so this The Mueller matrix for a particular surface has
polarisation effect will not be visible, been calculated using the Kirchhoff method which

In fig 7 the experimentrl curve shows a peak in separates the single and double scatter contributions.
Sthe polarised component which is not in the calcu- The advantage of using this method is seen when the

latid values. This may be due to the effect of triple difference between the polarised and uwnpolaised

-- - 483,
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OP5.3

THEORY AND MEASUREMENTS OF THE ANGULAR
CORRELATION OF SPECKLE PATTERNS

R W Syratt, J C Dainty
Imperial College, London

In this work, we illuminate a randomly rough surface at one angle, 01 , record
f the intensity around a small range of angles centered on another angle 0', and

repeat this process for another angle of illumination and viewing, 0 and 0'.
The two recorded speckle patterns are then cross-correlated to obtain the
ccorrelation coefficient between them.

$Polarizer
i - Delivery Components

SI CCD Camera

I

0=091+80

Figure I Figure 2

The work conducted so far is limited to observation in the specular direction
(0', = 01, 0' = 0) this ensures a large correlation range, but limits the
technique to examination of surfaces which do not reflect a large specular
component. The geometry can be seen in Figure 1. A range of speckle
patterns (changing 60) is correlated with a fixed reference pattern (01).

Figure 2 schematically shows the experimental equipment; typically twenty-
five speckle images are taken from the charge-coupled-device (CCD) camera
and averaged to reduce measurement noise. The optical disk is necessary to
store the vast amounts of data gathered.

168 ii
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Correlation Coefficient
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Figure 3

Graphs of experimental angular correlation curves at different references
angles, for a Gaussian random rough surface - with an rms height (ao) of
2.27 ± 0.2grn and correlation length of 20.7 ± 0.2jim - illuminated by a HeNe
laser of wavelength (1) 0.633 .tm are given in Figure 3; these are
computationally calculated from the speckle images. Overlaying them are the
curves from an equation derived from the single scatter Kirchoff
approximation, a form of which is given by equation 1. In practice a more
general two dimensional equation is used and averaged over the field view of
the CCD camera.,

C(o., 60) C', exp [_(4,, 2 (Cos 01 - cos2(01 + 0)2 (1)
COS2(0,+±) -- ) A
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OPl.5

SCATTERING FROM DENSE VOLUMES

N C Bruce
Imperial College, London

Introduction
There has recently been a great deal of interest in the use of light for non-
invasive testing in medicine. Possible applications include mammography,
investigation of skin cancers and detection of cancerous tissue during surgery.
The use of optics in a clinical environment requircs compact, robust devices
which are possible by using fibre optics., An experimental model of such a,
device has been built and its response for different experimental conditions
studied.

Experiment
The experimental arrangement is shown schematically below.

Fb* OWWPt~kTAV

Fi Ft'"

81"1 Pal

Light from a He-Ne laser is delivered to the sample via a mono-mode fibre to
give a clean illumination spot in the sample. A multi-mode fibre is used to
collect the scattered light and deliver it to a photon counting photo-multiplier
connected to a computer. The detection fibre is scanned away from the
source fibre, always in the same plane. The sample holder was a stainless steel
pot of 2cm diameter. This pot was large enough so that the effect of
reflections from the edge was negligible. The samples used were collections
of polystyrene spheres in water obtained from Sigma Chemical Company.
The samples were 10% by volume concentration of particles of diameters
0.0911im, 0.296/m, 0.46urm,, 0.605.um and 0.778pm. Water was added to
some of these samples to give 1% volume density liquids. Since these samples
are so well characterised it will be possible to compare the experimental
results with theoretical values.

Results
the two fibres for the 10% and 1% volume density samples for the 0.091pmn
the figres bow the 1 nu of olum nsts sae vers sep or 1.1

1 04



0.464 un, and the 0.778pm particles.

-.06O•-- O.46l.%i

- .9P -. - 0.6p

SO.4Ilpm ......•..... 0.461a~m

"• O0• •........ .0 . , . . . 0

29403

0.3 I,,3 2.3 33 IQ3 53 . 1 '3 3 43 3

10% volume density 1% volume density

From these curves it can be seen that there is no linear relationship between
the width or the maximum value of the scatter pattern and the size of the
particle. Indeed from the diffusion theory [1] the figure that describes the
scattering is the product of the number of particles per unit volume, the
scattering cross section per particle and I minus the average of the cosine of
the scattering angle. For the particles of interest here Mie theory gives values
for this product of 7.43mm-I, 38.42mm-1, 42.81mm-I, 38.50mm-1 and
33.90mm-1 for increasing particle size and the 10% case. The 1% values are
simply a 10th of these. From the figures scatter patterns follow the general
behaviour of this parameter, the smallest particle giving the smallest signal
and the middle sized the largest.

Work is progressing to perform the experiments for a wavelength of 830nm
(which is more suitable for medical applications) and to obtain calculations of
the expected scatter pattern using the diffusion approximation.

iii
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Meastreients of angular scattering by rough surfaces at grazing incidence

V. Ruiz Cortnd and J.C. Dainty

Applied Optics Section. Blackett Laboratory.
Imperial College of Science, Technology and Medicine

Prince Consort Road, London SW7 2BZ, U.K.

ABSTRACT

An experimental study of light scattering at grazing incidence from random rough surfaces is
present"l The surfaces are fabricated in photoresist and gold-coated.

2. INTRODUCTION

The interaction between light and matter has been studied for several years. The reflection and
refraction of light in a plane surface of any material are well known phenomena and it is possible to obtain
information about material properties by analysing the reflected and refracted light. However, the
interaction of light with rough surface is, in general, a non-resolved problem. In the last few years
significant advances have been made in the study of light scattered from rough surfaces. Of special interest
has been multiple scattering effects' at normal and small angles of incidence (up to approx. 50 from the
normal). Little work has been done at grazing incidence where the current theories are no longer valid.
Furthermore, the available data at such angles of incidence does not include accurate information about
the surface structure. The study of rough surface scattering at grazing incidence has many potential
applications, such as radar.

3. LIGHT SCATTERING

For scalar wave fields at arbitrary angles of incidence the scattered field is described by the Helmholtz
integral formula 2

t• where TI,(7'.) is the scattered field at any arbitrary point 7, in the medium, '(") is the incident field on the

f" surface, alan is the derivative along the normal component and G (7C, ;;) is the free space Green's function.

Different approximation methods have been used to solve this integral equation such as Perturbation
Theory 3 forsmal surface heights and the Kirchhoff Approximation 2 for small slopes, each of these methods
have a range of validity depending on the parameters of the rough surface. However some methods fail
at large angles of incidence (greater than 500 ) or others, due to computer implementat;on, are excessive
time-consuming prr.g.r-.ms. To avoid these problems for grazing incidence it is possible to apply the
Parabolic Approximation Method 4-

*1A



At grazing incid.;nce the scattered field propagates predominantly in one direction (fig 1), it has a
slow varying component in the z-axis and this fact is used for the parabolic approximation to redefine the
Green's function by a direct approximation of the free space function which for a 2-D geometry is given
by:4

[(X,ZX'Z') ik(z I-z-)Gix 2z2x,') x ,-' L2(x -x')
2 ikx 2(x1 -x

With this approximation we solve the Helmholtz integral equation and we obtain an expression for the
scattered field, of course this method is inapplicable to situations in which backscatteriing is significant.

0

-30 30

.60S\\ \

' -901 "•90

Figure I.- Measured diffuse scattering at different angles of incidence (60', 700 and
80') from a rough surface with standard deviation a, = 2.27plm and correlation

length a = 20.9pm.
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A simple numerical method based on the Kirchhoff approximatron with shadowing is presented for the calculation
of the scattered intensity distribution for rough surfahis illuminated at angles up to z 850 incidence. It may be possible
to go to higher angles but many moedscelisatien points are required on the surface. The method ib valid for a wide

* rang or--ughi• n values which is an advantage over other methods.

1. Introduction 2. Theory

Scattering.ofelectromagnetic waves from rough sur- The required results are derived from the two-
faces for high angles of incidence has proved to be a dimensional Helmholtz integral equation for the
difficult problem to calculate. The situation is of in- scattered field (the surface profile is constant along
terest particularly for scattering of radar from the sea the y-direction)
surface where the incidence angle is within a few de-

* grees of grazing [11. Calculations for this situation E.(X, z) = W Z') OH--" (kr)

have proved very difficult although some have been 4 iZ O
done. The parabolic equation method [2-41 has been r
used to calculate from very near grazing incidence but - H"o" (kr) 8Et (x',z')\ d,(
it is limited to surfaces with height variations less than 8n ,1
approximately one-fifth of a wavelength ofthe illumi- whereEdx',z') is the total field at the point (x',z'),
nating radiation. The small perturbation method [5] [ (X-X')2 + (z- zl)211/2, Ho")(kr) isthe zerth
has also been used but it is limited to even smaller r = (-- ' 2 +(~I2~lRI(r stezrt
varts alof ten us aed htigtis limiorder Hanke2 function of the first kind and ds' is anvariations of the surface heights. lmn ftesrae

In this communication the single scatter Kirchhoff element of the surface.

approximation with shadowing [6-1l1 is used to cal IThe KirchhoffApproximation approximates the to-
culate the scattered intensity patterns for htal field on the surface as the sum of the incident fieldctplus the reflected field at that point
of incidence. The physical justification for using this

V approach is that at high incidence most of the sur- Et (x, z) = (I + R)El (x, z), (2)
U face will be in shadow and only the high parts of the

surface will be scattering. Since these will tend to be 8Et(x,z) =i(l-R)k,.nEi(x,z), (3)
flat (as they will be maxima of the surface) the light On

, will tendtobemattered awayfromthe surface. Hence where R is the planar reflection coefficient, at the
only the s cagle stttr term is required. The results point (x, z), which depends on the local incideace
are compared to experimental results and the varia- angle, & (x, z) is the field incident at that point, kA is
tion of the scattered intensity with changing rough- the incident wave-vector and a is the outward normal
ness is presented-to show that the method is valid for to the surface at that point. The condition for valid-
Srougher surfaces, ity of the approximation is immediately obvious from
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above since R is the planar reflection coefficient. The S(x', z') = 1, if (x', z') is illuminated,
surface must be locally flat or, as is usually written,
the radius of curvature of the surface must be large = 0, if (x', z') is tiot illumitated,

compared to the wavelength. z
Substituting (2) and (3) into (1 ) andproceedingas ( ) is visible,

in Beckmann [ 121 the standard single scatter solution = 0, if (x', z') is not visible.
can be written as
a These represent geometrical or straight line shadow

S• - 2ex r - x/4)2] functions and so are an approximation to the true ef-
4 ( 4 •k fect of shadowing. Equation (4) was discretised by as-

r .suming that the integrand is constant over a suitably
x exp{i [ lk. (sin 0, - sin 0) x small range of the surface profile. Then the integral

r can be replaced by a summation and the system ran
- k0 (cos O, + cos 0) h (z)}} be proga-nmed into a cornpu'er. To remove speckle

noise tWe calculations are performed for many sur-
× [-ko(sin 0 + sin Oi) i' (x) faces of the same statistics and the resulting intensity

+ ko (cos 0 - cos 6j) patterns averaged.
It should be pointed out that the iniclusion of the

- R (x, z) k0 (sin 0 - sin 0,) h' (x) shadowing explicitly is essential for the method to
work for grazing incidence. It was found that for graz-

+ R(x, z) ko(cos 0 + cos 6i) ] •x, (4) ing incidence many more points were required in the
discretisation of the surface profile to follow the phase

where the reflectivity R(x', z') is a function ofx since variations of the incident field on the surface. This
the local angle of incidence varies along the surface, means that the second (ard higher) order terms in

4 In eq. (4), F represents the surface profile, 0, is the the iterative series solution (i.e. without the inclusion
incidence angle, 0 is the angle of scatter (measured of the shadcwing explicitly) would take too long to
positive in the opposite sense to the incident angle). compute on even the fastest computers. This is im-
R(x, z) is, in the general case given by the Fresnel portant since it was shown [13] that, for the itera-
reflection coefficients. To obtain this expression we tive solution, if an incident ray is blocked by n other
have assumed an incident plane wave of unit ampli- points before it can reach a particular point on the
tude. When the Kirchhoff method is used this expres. surface the n'th iteration is required to account for
sion is usually simplified by integrati-n by parts 16- the shadowing. For example in fig. I the ray shown
9]. However this process leads to two terms, one of is blocked by points A, B, C and D before reaching
which is an edge effect term which is neglected [6-9 ]. point E. Hence the fourth order iteration would be re-
In the situations of very nearly grazing incidence this mired to give the correct scattered field from point E.
edge term is not negligible, so the calculation proceeds For grazing incidence light will tend to be blocked by
from a discretisatioa of the above equation. This in- many points and so very high orders in the iterativeSvolves splitting the integral into a summation of val- ,teries would have to be computed to give an aoccurate

ues which are constant over a small region of the vari-
able x. This equation is the first term in the iterative A

solution method [ 13 1; however, to obtain a physically" - 0 c
realistic result the effects of shadowing must be in-
eluded. This is particularly true for the case of grazing
incidence when a large fraction of the sulace is not
illuminated because the incident light is blocked by
other parts of the surhce. These effects are included Fig. 1. Shadowing at large angles of incidence. The incident
by multiplying the integrand in (4) by incidence and ray that is mn the direction of point E is blocked by the four
scatter shadow functions points A, B, C and D.
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/ result. Therefore, although the method presented here 2.-
is an approximation to the iterative solution, it is a
practical solution whereas computer time limitations 150.
are prohibitive for the iterative method.

3. Results 50SI 50-

In this section results are presented and compared
with experimental data. The calculations were per-
formed for a one-dimensional perfectly conducting 400 450 500 550 60b 60 700 750 900 850 900
surface and for a metal surface but only the perfectly usk(&,)

conducting surface results are presented. For the metal Fig. 2. Comparison of experments and calculations for 600,
case there was no difference in The normalised curves 700 and 800 incidence on a surface with a = 0.4 pm and
for ie two polarisations although the absolute value r = 12.0 pm. Solid lines are the calculation and circles
of the scattered energy was higher for the s polarised are the experimentally measured values for p polarisation
case (electric vector perpendicular to the scattering incident and detected. All curves are normalised to unit area.
plane) than the p polarised case. This is due simply
to the fact that the Fresnel reflection coefficients are direction and constant L, the y direction. This means
larger for s. The normalised curves were very similar that the quantitative comparison of the results may
to the perfect conductor case. For a perfect conductor not be valid. However, the qualitative comparison can
tie-scattered intensity is the same for the two funda- be useful. As can be seen from the figure these curves

J mental polariations, s and p, and the modulus of the for the scattered light distributions as functions of an-
reflection coefficient is 1. gle agree well with the experimental data. In particu-

The surface used here is approximately described lar the presence of the large specular peak at 800 in-
by a gaussian correlation function with a I/e distance cidence is predicted in the calculations.
T = 12.0 pm and a gaussian distribution of heights For higher angles of incidence the calculations the
with a suazoarda deviation of o'a = 0.40 um. The ex- method starts to break down. The values for the uni-
periments were conducted with a helium-neon laser tarity are 1.02 for 850 incidence, 1.06 for 860, 1.20 for
(A = 0.633pm)., The calculations were performed on 870 and 2.51 for 890. Therefore for the values of the
a 400A length of surface discretised into 1000 points, surface parameters used the met' od described here
On a Sun Sparc 4tation the calculations took 40 min- may be used for incidence angles of up to approxi-
utes per frame. As a check on the validity of the cal- mately 86*. It may be that very many extra points are
culation the ratio of the scattered energy and the in- required for the large angles of incidence to follow the
cident energy was found This is termed the unitarity phase of the incident wave on the surface.
as it should have the value I for a perfect calcWdation In the computer it is possible to increase the rough-
(uall the energy is reflected from a perfectly conduct- ness of the surface by increasing the value of a. Figure
ing surface). The unitarities were: for 600 incidenc- 3 shows the normalised scattered intensity patterns for

1.0089; for7 0 =0.9978 and for 800 = 1.0436. four surfaces all with the same value ofr = 12.0 Am
These numbers compare well with results for other as for the surface above and values ofthe roughness of
situations [6-8J and give confidence in the shape of (a) o = 0.40 pm, (b) or = 0 8/pm, (c) a = 1.2 pm
the resulting curves, and (d) a = 1.6 pin. The incidence angle is 800 for

Figure 2 shows the comparison between Walcula- the curves shown. The unitarities for the calculations
tions and experimental results for the normalised in- were (a) 1.0436, (b) 0.96, (c) 0.998 and (d) 1.02.

tensity (the graphs are normalized to have unit area All of these numbers are reasonable and show that the
under the curve). Note that the experimental results calculation is less sensitive to the roughness than it is
are for a surface rough in both the x and y directions to the angle of incidence when the incidenoe angle is
whereas the calculation is for a surface rough in the x high. This is true since most of the surface is shadowed
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i~. is valid for incidence angles up to F 850 tad for sur-
faces whose rms roughness is up to a few wavelengths

12.0 -and can be used to calculate the scattered intensity
for any material of rough surface. The method has the

Si•- virtue of s;mplicity and seems to agree with experi-

8.0 mental data.

60
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